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PREFACE

The attitude of a satellite in orbit is materially affected by

the gravitational torques which are exerted upon it. The response be-

havior of this vehicle to these torques will depend on both the initial

orientation and angular velocity, and the orbital path followed.

Past studies, in which the distributed mass of the satellite has

been approximated by a dumbbell-shaped body contained in the orbital

plane, and moving along a circular orbit, have revealed the essential

features of the attitude response behavior.

This Memorandum extends the analysis of the dumbbell's motion to

elliptic orbits and shows to what extent the conclusions reached in

the circular case are affected when orbital eccentricity is taken into

account.
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This Memorandum discusses and analyzes the first-order effect of

orbital eccentricity on the planar tumbling or oscillatory motion of

a dumbbell-shaped satellite. This has been done by assuming that the

angular orientation angle T can be represented by a power series in

eccentricity e, in which the coefficient of the e0 term was set equal

to the circular solution I c available from earlier investigations. The

differential equation for the coefficient of the e term is shown to

be of an inhomogeneous Mathieu type, the particular solutions of which

can be readily obtained if certain weak restrictions are placed on the

initial magnitude of the dumbbell's angular velocity.

The analysis indicated that the orientation of the satellite in

the elliptic orbit can differ substantially from the one determined
for the circular orbit.
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SYMBOLS

AO - coefficients of the series expansion of the Mathieu
2r functions

a = semimajor axis of the orbit

C.G. - center of gravity

C.M. = center of mass

Ce,, Se, = Mathieu functions of fractional order

e = eccentricity

F = force

F = net force exerted
r

K = quarter period of the elliptic function

k = modulus of the elliptic function

*L = radial distance

I = half length of dumbbell

M - distributed mass
total mass
mean anomaly, n(t - t )

m = mass

n - mean angular velocity in the elliptic orbit,

q - coefficient of trigonometric term in Mathieu's equation

- parameter defined below Eq. (43b)

r, f = orbital radius

s = independent variable, s =M

T = kinetic energy

t = time

to = time of perigee passage

U - potential energy
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V - velocity

W - Wronskian

z = independent variable defined by Eq. (44)

= average value of angular velocity d' C /dH(>3)C

= order of the Mathieu function

= earth's gravitational constant, GME

= orbital period

a = polar position angle of dumbbell's C.M.

S= amplitude of oscillation

c= amplitude of oscillation in circular orbit

4' = initial angular velocity of dumbbell
c 

•a

w=absolute angular velocity of dumbbell



I. INTRODUCTION

An object of arbitrary mass distribution whose center of mass
2

moves in a given orbit through a central inverse r force field will

experience a disturbing torque acting around its center of mass, which

would cause its spatial orientation to vary with time.. This torque

* vanishes when the three principal moments of inertia of the body are

equal. The motion of a dumbbell-shaped object, being the simplest one

to analyze mathematically while at the same time exhibiting many of

the characteristics which result from the action of this imbalancing

gravitational torque, has received the most attention.

* An understanding of the rotational-motion characteristics of a

dumbbell-shaped satellite could conceivably be of more than purely

academic interest, judging by the frequent mention of such a concept

in connection with a manned space station in which gravity is artifi-
c .ally simiulated.'.The most recent of these proposals is General Eiec-

tric Company's Pseudo Gravity Space Station concept, which envisages

two inhabited compartments hinged by means of 100-ft-long extension

tubes and rotating around a centrally located nonrotating hub.

In one .of the earlier papers on the subject, Klemperer and Baker,(1)

drawingon the long-known stable oscillatory librational motion of the

.moon around its axis of rotation and being interested in the possibil-

ity of utilizing this effect for measurements of orientation on board

a satellite, analyzed the librational motion of a syimmetric dumbbell

placed in a circular orbit. Assuming small deviations from the equi-

librium position, they show that for a dumbbell of small linear dimen-

sions (compared. with the orbital radius) the dumbbell behaved essen-

tially like an undamped simple pendulum with a natural frequency equal

to V3times the .frequency of the motion in the circular orbit. They

also briefly mention that for an orbit which is not precisely circular,

the situation would become more complex.

Schindler, 2) confining his analysis also to circular satellite

orbits but lifting the restriction on the size of the angular devia-

tion, shows that the librational periods can range in a continuous

manner anywhere from around 1/3 T (the orbital period) on up to infinite

Described in Aviation Week, Vol. 78, No. 4, January 28, 1963,
pp. 56-58.
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values of the time, as the initial angle which the dumbbell makes with

the vertical ranges from near zero to TT/2 and that, therefore, an ini-

tial value of this angle exists for which the librational period just

equals the orbital period.

Klemperer, in an ARS Journal note, presents a first integral

of the motion of a librating dumbbell and indicates that the maximum

value of the amplitude of oscillation, T, of the dumbbell is defined

by ,-the relation sin Tm = a ovn,x where /6o is the angular velocity.

when ¶ 0, and n is the angular velocity of the center of mass in-the

circular orbit. He points out, furthermore, that the motion remains

oscillatory as long as %Fo0 <.An but becomes one of tumbling when 0

exceeds this value.

In the same issue of the ARS Journal, Baker(4) considers an orbit

of small eccentricity and points out that under the restrictive assump-

tion of small librational amplitude, the motion is governed by .a forced

Mathieu equation.

Schiindler (5) employs a Hamiltonian formulation to study the dy-

namic behavior of the dumbbell in the. vcinity of-the two positions

* of equilibrium and proves in a rigorous manner not only. that the ver-

tical-dumbbell orientation is one of stable equilibrium, while the

horizontal one is a position of unstable equilibrium, but also that

a purely oscillatory motion around the unstable-equilibrium position

is possible in an elliptic orbit, provided the initial conditions-are

properly chosen.
(6)

Moran employs a perturbation technique to study the effect

which the librational mode of motion of a dumbbell moving initially

along an undisturbed circular orbit has on the-motion of its center

of mass. He shows that resonance conditions in the radial equation

of motion can arise for certain values of the initial librational fre-

quency and that the differential equation for the first radial cor-

rection term gives rise to a divergent oscillatory solution as time

increases.

The present Memorandum describes in a qualitative and quantita-

tive manner the first-order effects of orbital eccentricity on the

planar librational motion of a dumbbell by means of a perturbation ex-

pansion in the vicinity of the nominal circular-orbit solution.
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II, THE GRAVITATIONAL TORQUE

Before setting out to write down in a mechanical fashionlLagrange's

equations governing the planar motion of the dumbbell satellite, it

might be useful and instructive first to consider briefly one aspect

of the physical origin and nature of the'gravitational torque which'is

"but seldom recognized and mentioned. Reference to Fig. 1 makes it im-

mediately obvious that as.mass ml of the symmetric dumbbell shown
(in 1.. ,m) is.close

(M = m) ien closer to the center of attraction than is massm

"" ..it wil experience-alarger gravitational radial force than will mass

. .... The difference in magnitude and orientation of those two forces,

.. gives rise.to the well-known expressions for the resultant force, which

acts through the-center 6f mass 0 and. perturbs the translational mo-

tion, and to the gravitational torque around 0, which gives rise to

-the librational-motion..

T 2  '
I•w

Orbif of C.M. C.M.

r

• .. 6

Center of eorth

Fig. I - Geometry and notation
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A more graphic way of interpreting the action of the gravitational

torque and one which allows for a more qualitative feel for its sense

and magnitude is by a visualization of the instantaneous relative po-

sition of the dumbbell's center of mass (C.M.) and center of gravity
* .. • .* . .

"For a body of arbitrary shape, these two points coincide in a con-

stant, unidirectional force field, and for spherically symmetric bodies,

also in an inverse.r 2 field. In general, though, the two points are

"distinct;
Th e center of gravity of a distributed mass M is found by an ap-

plication of Newton's Third Law..It is that point at which a concen-

trated mass dqual, to the total mass (M = 2m) would experience a force.

". equal in magn.tu de and'opposite in direction to that experienced by

the earth ýf its center, due to the gravitational attraction exerted

.upon:it by the mass M.
This definition is now used to locate the center of gravity of

the dumbbell 'for two extreme cases of'its orientation, T = T/2 and

*" 0.'=O, as shown in Fig. 2.

e.C.G. 2
M2 -hm 1

rp ~ r121- T1
~ir G. M.

C.G.

"Center of earth
(a) Center of earth

(b)

. Fig. 2- Relative location of center of mass and center.of gravity



Letting Pl1 and F 2 designate the. forces at min and m2 , respectively,

we have

2 3 2r2

where m1 = m2 . = m and p G= E, the earth's gravitational constant. Be-

cause of 'symmetry, *the net force exerted on the dumbbell, Fr' will be

parallel to r, so that

F Fi* +F*- ir~( ~) ~ :r
r .' 2 r r2 1r r *2. r

(2)
=. _ 2umr•

[r + 2

This force acts on the concentrated mass 2m located at a'radial

distance L. Under the assumption A/r << 1 we get

F 2._m _ (3)
r L2 r 2 Ar

from which we find that

242
r r

and

23 2 (5)&r - •r
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This places the center of gravity above the center of mass. In

the case of a dumbbell rotating in a counterclockwise direction, any

slight increase in the angle T beyond n/2 would cause the center of

gravity to shift to the left of the vector r and thereby give rise to

an accelerating moment around the center of mass. The converse holds

.' " true during the 'period of time prior to the reaching of the horizontal

S .. orientation, when the torque. has a retarding.effect.

A repetition of the above analysis for the orientation (b) of

"Fig. 2 shows that the center of gravity 'is now located a distance

• 6r -3'2 A/r below the center of'mass. It is immediately evident

"that any slight deviation from the vertical position gives rise to a

"torque which opposes the motion, and thus labels the vertical position

one of stable equilibrium.

The path described by the dumbbell's center of gravity during one

complete period ofrotation is shown.schematically in Fig. 3 and gives

an indication of the oscillatory nature of the gravitational torque.

Locus of C.G.travel

• . 31 2 /4r

" .. •- 30/2r

'~Locationi for maximumn"0'" retoaring torque

Location for maximum
accelerating torque

Center of earth•

Fig. 3--Locus of center-of-grovity travel (not drawn toscale)
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III. BOUATI1NS OF MMTION

The kinetic energy is

T mi V 2+1mv2 2 (6)

and the potential energy is

"aml "Lm2()u (7)
r1 r2

where

V, r+ Zwi

1 y
V2 - r.+i~

(8)
r ri + r

r2
2 [r+ 2 -~~o~ 1/2

r L'r2 + £2 + 2rA cos TI 1/2

Figure 4 shows the various parameters and unit vectors used in

the above relations. After Eqs. (8) are substituted into Eqs. (6) and

• (7) and the expression for the Lagrangian '£-U is obtained, one can

derive the set of differential equations shown below.

r j2. . I[- os,+ r- + A coo,] (9)
2 2+

2 d [r 2i + 2 (0+ i)] - * * (10).
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1(11
d ,g~j+ )] urA sin T~ ~r 2 2 rl1

Equation (10) indicates that the combined angular momentum of the

motion is conserved.

m2 y

Y

r

SFig. 4 - Geometry of motion

The bracket on the right-hand side of both Eq. (9) and Eq. (11)

can be evaluated with the aid of the relations for rI and r2 of Eq. (8).

Realizing that £/r << 1, we can write the difference of the inverse

cubes of the radii as
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1 1 .1 1.

3 3r 3/2 3/2
2  1  rEl+(A)2 +2(1)Cos ] r' [+(4) 32(1) cos

r rr r

After the right-hand side of Eq. (9) is also evaluated, we come

up with the following set of differential equations:

r - 2 j • + -• (3 cos2 - 1) + (12).2 r2"r"

r

-[ 6  ( ) 2  1} 0 (13)

+ + 9 y+ -sin-2T. -0 (14)
2 3r

It is observed that the dumbbell size appears only through the
2parameter (1/r)2. In order to be able to express the orbital parameters

as power series in (A/r)2 it is necessary to treat (A/r)2 as a con-

stant. This can be done for orbits of small enough eccentricity, e,
when A/r -!/a, where a is the semimajor axis of the orbit. Follow-

ing Moran(6) by assuming expansions of the form

n- a
n,.0

(15)

n-0



10

there results the zeroth set of equations

i 2o r o 0 o 2 (16)

0

d(r 26)0 (17)d 0

j+ p sin 2T - o (18)

2 3 - 0 (8
r
0.

Equations (16) and (17) define of course the undisturbed orbit

*of the center of .mass and have as their solutions the series

r° -0 --e cos -X .(cos 2M- 1) - O(e3)... (19)

90 M +2e sinM+ + e 2 sin 2X1+ O(e 3)... (20)

where

M - n(t -to) - mean anomaly

to M time of perigee passage

n - mean angular velocity in the elliptic orbit -

Now let

y c + Tn e (21)

n1

where Tc denotes the orientation angle of the dumbbell when the center

of mass describes a circular orbit. Substituting Eqs. (19), (20), and

(21) into Eq. (18) and collecting like term in eccentricity gives, to

linear terms in eccentricity
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c + 2 n 2 sin 2Y 0. (22)

c 2

+ e' + 2 + 3e cos ][sin 2(Tr + eii 1) 2en2 sin M (23)

Approximating sin 2(Qc + ey1) by (sin 2T c + 2eI 1 cos 2yc) and

using Eq. (22) gives the following differential equation for ¥1

+ On 2 cos 2y)j 'Y 2n2 sin M - n2 cos M sin 2c (24)
1 c 12

We now replace time, t, by the mean anomaly, M, as the independent
2

variable, which eliminates the factor n in Eqs. (22) and (24). Thus

" + 2 sin2' c = 0 (25)
c 2 c

¶r+(3cos2yc)¶y " 2 sinf-M -cosMsin2y (26)

where ( )' denotes differentiation with respect to the mean anomaly M.
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IV. MOTION IN THE ELLIPTIC ORBIT

We shall now investigate the nature of the solutions of Eq. (26).

These depend on the form of the solution of Eq. (25), the differential (5,6)
equation of the circular-orbit case. As shown by Schindler and Moran,

the solution to Eq. (25 depends on the initial value Of T' for yc O,
• • ci

and is given by

sin Ic r (i' / Sn ,/3 o lit < /V (oscillation)
(27a)

sin Tc Sn T' 6 it' > •/ý(tumbling) (27b)

ci o ci

The modulus k of the elliptic function is given by

k - i/3 (oscillation) (28a)

k /3/ (tumbling) (28b)
k i.

Furthermore, for two values of the initial angular velocity, Y'c =

1.66675, 1.78794, the periods of the oscillatory and tumbling modes,

respectively, will equal the orbital period of motion.

A plot of Eq. (27), taken from Ref. 6, is reproduced for conven-

ience in Fig. 5.

SOLUTION FOR lARGE t' (TUMBLING MOTION)

The solution of Eq. (26) with Eq. (27) taken into account is fa-

cilitated if the range of possible values of ii is broken up _nto two
i r

separate regions,. For large values of ic., say Tc 1 3, Fig. 5 showsSi i
that the oscillatory ripple around the constant-slope line of iTc versus

80 has nearly disappeared, so that it is reasonable to approximate sin it
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• ~~~i " i /b 2-,/7-
:.."....3 . . . . ,r/2, -/2w2

I- 1.78794

S"I'T .---- exact
' . . - - linearized

7r/2

3/2 1.5'-6675

7r/2 0 "/2 "V 3"/2 2* 7

Fig. 5-Time history of rotational motion in a circular orbit (6)



15

For cf 3, q = 2- 2

The order of the Mathieu function, •, is Obtained by equating to

each other the two functions v0 and 7, which are given by' the expressions

2 2
.2 2+ .2) .qq0' 2 2 - O(q3

2(32)
•2 .q q 2q3

v = E- + 2 +2 .0(q)o q • -2)2 (" 2)2(" 4)2

For the present case, a value of a -0.118 is found. The coef-

ficients A~r are solved from the recurrence relations

(2r +) 2 AOr "q(Ar 2  Ar-2) (-+< r < ) (33)

When terms beyond A 4 and A4 are neglected, the other coefficients

can be evaluated in terms, of AO. We find0

A4 = 0.0005205 AO

A!2 = -0.04706 AO

-2 0 (34)

A = -0.03716 A(

A - 0.0003651A4 0

and the two solutions then become

/ Ce0 . 1 1 8  , AO [0.0005205 cos 3.882s + 0.04706 cOS.1.882s

+ cos 0.118s + 0.03716 cos 2.118s + 0.0003651 cos 4.118s +

(35)
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by sin 0aM, where M is the mean anomaly, and o is the average value of

the angular velocity dT c /dM which is assumed to be larger than or equal

to 3. For convenience of analysis 0 will be considered an integer. With

the additional change'of independent variable s aM, Eq. (26) becomes

dL 2 T
2 cos 2s} -2sin Cos sin 2s (29)

ds2 . 2 1 1 2a2 1

which is an inhomogeneous Mathieu equation of the form

2
+ [a 2q cos 2x]z - f(x) (30)

dx2

with

a.. 0

and.

3
2

201

In view of the assumption a t 3, all solutions to Eq. (29) are

stable and oscillatory in nature and consist of Mathieu functions of

fractional order. For purposes of illustration, the method of obtain-

ing the solution for the case a - 3 will be demonstrated below.

NUMERICAL-EXAMPLE SOLUTION

Employing the notation of Ref. 7, the two linearly independent

solutions to the homogeneous part of the equation, T I1 and T12' are

the functions Ce (s, -q) and Se (s, -q) which are given by the series

- Ce (s, -q) (_,)r AOr cos (2r + O)s

(31)

2 Se (s, -q) (-i)r A0 sin (2r + O)s

r --



16

•12 Se 0 1 1 8  = AO [-0.0005205 sin 3.882s - 0.04706 sin 1.882s

+ sin 0.118s + 0.0371:6 sin 2.118s + 0.0003651 sin 4.118s + ....

(36)

The complementary solution to Eq. (29) is then

* 1 = c 1 e.0. 1 1 8 + c2 Se 0 .118 (37)

The solutions are nonperiodic but are bounded and tend neither

to 0 or U as s -.

If we now define the set of fundamental solutions Tll' ,12 such

that

711(0) = 1 1
(38)

/ 1i(0) =. '12( 0 ) .0

the complete solution is given by

C•(s) Y (1S) + C2 (s) (S) + Y1(0) T11(s) + ¶(01) T (S)

(39)

where

C 1(S) - s h(C) Y 12d()

0 h(• .ll(V 1)1
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2 i -n cos sin2C
- ~si a26 2 a

{Tll(V) T.2(] Q Wronsk .ian of Yland T1

Since all the initial conditions on the motion are assumed to

have been satisfied by the circular-orbit solution, 4c9 we have Tl(O)

* ¶(O) = 0, and the complementary portion of the solution consequently

vanishes.-

The Wronskian W will be a constant because Eq. (29) has no first

derivative of TI' and can therefore be pulled out from the integral

sign. Solution (39) can then be written

S S

w(O)Tl =Seo0.118(s) •hQ) Ceo0.11(t)dg - CeO.118(S ) h(t) Seo. 118()dt
0 0

(40).

When all the operations are carried out we finally end up with

the solution

1.00028 - 1.0565 sin 0.3333s + 0.10892 sin 1.6667s

- 0.01276 sin 2.3333s - 0.00124 sin 4.3333s

- 0.00112 sin 3.6667s + .... (41)

The result is plotted in Fig. 6, which shows the behavior of Tc, T''

and vI as a function of M for one orbital period of the dumbbell.

The magnitude of the perturbation caused by an orbital eccentri-

city of e - 0.1 is shown by the dashed curve. It is apparent that

orientation errors as large as 80 deg could occur during the first

orbital period.
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19

18 - 4 Orientation angle in circular orbit q =4c+ O.lI*,'/

17 /
16 - z Angular perturbation due to orbital eccentricity / 41

• /

15 -/

14 -00/

13 -

12 /

/
10/.

9
8/

//-7/

6/

4
3

2
I /',

0 • r
0 r/2 2 32 2W

-l M (rad)

-2

-3

-4

-5

-6
0 100 200 300 360

Mean anomaly M (deg)

Fig. 6 -Solution for the tumbling case with a =3
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SOLUTION FOR SMLL T' (OSCILLATORY MDTION)
i

As y' is reduced from a value of about 3 and approaches V3,ci
the accuracy of the approximation Tc , 'Y . M becomes progressively

c C
worse, and the above solution ceases to describe the motion.

Neglecting the region around the condition I f ./3, which is
i

only of limited interest, we consider now'the form of the solution

of Eq. (26) for ly' < r.
ci

The functions cos 2T and sin 2Tc appearing in the differential
C c

Eq. (26) can be expressed as functions of M by means of Eq. (27a).

cos = 12 2 sin 2  = 1 2 k2 sn 2 v-3H (42)

sin 2Tc .2sin Tc cos -c 2k sn 3 M dn/r3 M -2k d cn/5 Mc c c d(v'iH)

In order to bring Eq. (26) into a more tractable form, the func-

tions snA M and cnV3 MHare expanded in Fourier series.

SsnV M q 3 4 43 s+n M 7- sin 2K +

1 2K q q

-r..l/2/
q ~ 2sin* Ur + 1) fI (43a)

r0 1- 2r+l 2K

Kcn %6 -M q cos (2r + 1).V TM (43b)L 1 0 .-2r+l 2K

-rK '/K

rr12
K K(k) f.. d

0 1 - k2 sin2 0

K' = K(k')

k'2 1 - k2
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For sufficiently small values of j, the retention of the leading term

in each of Eqs. (43a) and (43b) might give sufficient accuracy. A

rough idea of the size of q is obtained by taking for instance the

case Ti - 1.66 as a rough indication of an upper bound on the angular
ci

velocity. This corresponds to equality in orbital and librational

periods. For this case

k _ 1.66 - 0.958 K(k) = 2.8

k'= 0.2868 K(k') a 1.6

1.6

Se = 0.165

As y' decreases, k will decrease and k' will increase, so that
ci

K will be reduced and K' increased; this will lead to a decrease in

the size of q. Thus, for

' < 1.66
S ci

< 0. 165

Placing an upper limit of 1.66 on T , it appears that the reten-
ci

tion of only one term in the Fourier expansions would b" satisfactory

in the present case. Under this approximation terms which are of mag-

nitude • have been neglected in comparison with unity. Thus

2 2vKM *2 +2 r13

cos 2Tc ! 1 P-p2 sin 2 -- 1 --
c 2K 2

sn2 9!2Tr 2 si V ~ GTTM
.c 2 sin 2K
kK (1 + q)

c2 2- _ I + 2 i
3k2K 2 - 2 2 2
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(Note that k by definition.)

Making the additional transformation of independent variables

Z = M (44)
2K

we obtain Eq. (26) in its final form

d 2 2
I±+[a 2q cos 2z]~ IF Ksin--2K-z - 6 ,cl [sin(2K + I)z
2dz3T V3 Tr k(l + Q)T

(45)+-sin~l 2K z

where

4K q

q -8 q(1 - _q2

As in the last case, here too the motion of libration is governed

by an inhomogeneous Mathieu equation. The bounded oscillatory form of

the forcing function suggests immediately that for finite values of

/ the nature of the forced solution of Eq. (45) depends on the sta-c
bility or instability exhibited by the solution to the homogeneous

Mathieu equation. This question is easily resolved with the aid of

Fig. 7, which presents in the plane of (a) versus (q) the stable and

unstable regions of the solution to Mathieu's equation. Due to sym-

metry with respect to the a axis, the right side of the Mathieu plane

has been used.

The curves Ceo, Sel, and Ce1 denote respectively the loci of zeroth

and first-order periodic solutions to Mathieu's equations and represent

the transition curves between the stable and unstable regions shown.
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The directed dashed curve indicates the trace of the (a,q) point of

Eq. (45) as the initial value of angular velocity T' tends toward

zero. Except for a narrow region around a - 1, q -c6, the homogeneous

solution is at all times oscillatory and divergent as z increases,

making the complete solution unstable. That segment of the dashed

curve which appears to follow closely along the SeI curve has absoci-

ated with it divergent, though periodic, homogeneous solutions.

Although the scale of Fig. 7 does not make this apparent, a simpli-

fied analysis shows that the dashed curve approaches the point a = 1,

q - 0 with a slope da/djqj --2. Since the SeI curve exhibits at this

point a slope of -1, it appears that the dashed curve penetrates into

the stable region of the plane as T' assumes vanishingly small values.ci

In the limit, as

T' -.0
C.

K TT /2

a-l

k

Equation (45) is reduced to the form

d 2 1_2 1 4 1 z7-- + 1 sin1- z 2 sin z + sinl-z

d ~ yrf./3

(46)

The complementary solution of Eq. (46) will be bounded and perio-

dic, but the forced solution, though bounded too, will not exhibit any

periodicity. The form of the arguments of the trigonometric terms in

the forcing function precludes the occurrence of resonance conditions.
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VI. CONCLUSION

The planar rotational motion of a dumbbell-shaped satellite whose

center of mass moves along an undisturbed elliptic orbit of slight ec-

centricity has been analyzed. It has been shown that the correction

terms due to eccentricity, which must be superimposed on the angular-

position time behavior of the same satellite when moving along a cir-

cular orbit, are always bounded and oscillatory for all values of ini-

tial angular velocity in excess of roughly 3 times the orbital angular

velocity. Depending on the magnitude of the eccentricity, these per-

turbations could be quite appreciable.

When the initial motion is one of pendulous oscillations, the

first-order effect of eccentricity is to introduce a divergent oscil-

latory term into the time behavior of the first perturbation term and

thus to cause the orientation angle in the elliptic orbit to differ

significantly from that assumed in the circular orbit. Because of

possible phase differences in the time behavior of the circular orien-

tation angle V c and the perturbed correction term TV it is still possi-

ble for the complete solution not to exhibit an actual boundless in-

crease in amplitude as long as the restrictions imposed by linearity

are not violated.


